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Computing Effects and Error
for Large Synthetic Perturbation Screenings

Nathalie Drouin
*

Raghu Kacker

Gordon Lyon

Synthetic Perturbation Screening (SPS) is a powerful, statistically-based method of

performance improvement for parallel computer programs. SPS uses designed statistical

experiments to identify segments of code that consume significant computing resources or

otherwise impede a parallel application. Analysis typically starts with a preliminary

screening of a large number of code segments; SPS does this via fractional factorial designs

based upon Hadamard matrices. Since Hadamard matrix designs are not commonly

discussed in introductory texts, there is a need to survey briefly the calculation of their effects

and especially, their standard error (5^ ). The result is a practical, supplementary sketch

that should help users of SPS automatic tools understand how investigations and analyses

are being performed.

Key words: Analysis of V^ariance; Effect; Factorial Designs; Fold-Over; Hadamard Designs;

Parallel Programming; Screening; Standard Error; Synthetic Perturbation Screening.

1. Design of Experiments and SPS

Statistically designed experiments (DEX) are strategies to maximize learning at minimum cost. A
typical DEX involves a number of input variables called factors and one or more output variables called

responses. The possible settings of the input variables delineate a multi-dimensional experimental region.

This region is usually quite large. In its simplest form a DEX specifies the test points in the experimental

region at which the response is evaluated. Combinatorial mathematics is used in specifying the test points,

thereby ensuring a geometrically balanced coverage of the experimental region. A map of the response

thus obtained provides an estimate of relationships between factors and responses. (Although certain tac-

tics called randomization, blocking and replication are used in DEX to enhance the validity of the

response map, these are not discussed here.) While DEX are usually used in physical science experimen-

tation, their use in computer experiments is gaining momentum. The key difference is that in computer ex-

periments, responses arise from execution of a computer program.

* N. Drouin is a visiting scientist with the Advanced Systems Division.
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The DEX approach is an inexpensive, empirical altemaiive to analytical methods based upon a

thorough understanding of the system under study. Cost alone is enough reason to try DEX as an initial

strategy. The DEX statistical strategy can be applied to almost any system; it has been found to be

effective even in the most complex multi-variable systems. Many analytical approaches tend to lose

effectiveness as the complexity of a system increases. DEX do not. This attractive scaling property is of

paramount importance for parallel systems and their study.

Objectives of a designed experiment include the following :

1 - Isolate important factors from many other candidates.

2 - Identify better, more promising, operating conditions for each factor.

3 - Identify better combinations of test settings.

4 - Map the relation between input factors and output response.

5 - Identify significant interactions and curvature effects of the factors.

6 - Find factors which affect variability and settings which minimize variation.

Primary focus here will be upon objective 1, which is called screening.

Synthetic Perturbation Screening, SPS, is a methodology for parallel programming sensitivity

analysis [4]. It relies upon DEX for screening large sets of factors. Although the underlying statistical

theory can be complex, the basic DEX application in SPS is simple to describe. A parallel program is

treated as a grey box with input parameters and outputs. Input parameters are arguments to artificial per-

turbations (usually delays) that have been inserted into the program at potential bottlenecks. Bottlenecks

are segments of code that impede computing. Outputs are measurable attributes of an execution, e.g., pro-

gram run times. The experimenter first chooses a number of factors for study. Each factor corresponds to

a given location in the source code that might be a bottleneck. He then introduces synthetic perturbations

(e.g., artificial delays) at the factor’s location. This is done in systematic patterns. A succession of such

patterns constitutes a statistical plan of (parameter) search. By deliberately varying the perturbations

(treatments) of the chosen factors in a planned manner, the experimenter can deduce the effects and in-

teractions of the treatments on the program response. This information identifies performance bottlenecks.

2. Experimental Plans and Factorial Design

Given a sufficiently restricted set of input variables, one mainly needs a DEX investigation strategy

that is reliable and accurate. In such circumstances, it can be assumed that all the inputs are important in

varying degrees. Objective 5, above, would be such an instance. However, larger screenings (objective 1)

as used in SPS definitely require DEX approaches that are, in addition, efBcient. Thus, the traditional one-

factor-at-a-time (1-FAT) method of analysis would be inordinately time consuming. Moreover, it can lead

to incorrect conclusions, for 1-FAT does not capture information about interactions among factors that

affect the measured response.

Full factorial designs are statistical designs for studying many different factors. They permit esti-

mation of all main effects and interactions, but require a prohibitively large number of measurements when

there are many factors. Consider for example, a two level design in 10 factors. Each factor assumes two

levels (e.g., high and low). Full factorial experiment involves 2 = 1024 different patterns of factor set-

tings. With each pattern corresponding to a different run, this is a serious impediment, as the aim of SPS is
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to give results from as few runs as possible. Furthermore, this design permits estimation of all interactions.

Quite often high-order interactions are of negligible magnitude when compared to main effects and low-

order interactions. Thus, a full factorial design is usually not appropriate for screening large sets of fac-

tors. One is mainly concerned with identifying and discarding factors that have no significant effects.

Fractional factorial designs trade knowledge of high-order interactions for a much diminished

number of runs. Consequently, these designs may be viewed as efficient ways for conducting factorial ex-

periments from a reduced set of measurements. The major assumption is that many interaction terms are

not significant and can be ignored. Two-level fractional factorial designs can be generated from Hadamard

matrices [1,10,13,14,15,16]. Hadamard matrices are intimately connected to factorial experiments in

which each factor is at two levels; therefore they can be used in SPS (see Figure 1, next page) where treat-

ment levels typically take two nominal values (low) or (high). The minimum number of runs re-

quired to conduct a meaningful investigation on the previous 10 factors example then drops from 1024

(full factorial design) to 12.

The greater the number of factors, the more revealing the economy in runs. The table below con-

trasts runs of a meaningful experiment for a k-factors model using full factorial and Hadamard designs.

Resolution 3 designs based on Hadamard matrices will yield main effects assuming all interactions are

negligible, while resolution 4 designs will yield main effects even when two-factor interactions are

present Note that resolution 3 designs confound main effects with two-factor interactions while designs of

resolution 4 do not. Interactions will demand further runs, but the assumption is that with large sets of fac-

tors, this would be rare.

Minimum Number of Runs

k-Factors Full Factorial Hadamard Designs

res 3 res 4

2 4 4 4

3 8 4 8

4 16 8 16

5 32 8 16

10 1024 12 24

20 2“ 24 48

30 230 32 64

50 250 52 104

100 2100 112 224

1^2“ Least integer n divisible

by 4 such that n >{k -f-1)

for res' 3. For res 4 # of runs is n

for k =2 and 2n for k >2.

Table 1.

In general, experiments arc performed to measure the effects of one or more factors on a response. In

the next section, a small example of a two-level, full factorial design with 3 factors illustrates how effects

can be estimated. This exemplifies what SPS might do after screening and discarding a large number of

factors. The example furthermore illustrates why larger sets of screened factors must be treated

differently.
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3. Computation of Effects

3.1 Effect of a Factor

Let Progl be a MIMD program with 3 suspected bottlenecks: FI {for loop), F2 (critical section) and

F3 (while loop). A two-level full factorial plan with k =3 controlled factors is an arrangement consisting

of 2 =8 possible combinations. Each factor may take two treatment levels, denoted by and ’+’ respec-

tively. Each of the 2 combination is a run. The following 2 plan indicates how a 2 plan can be written

for any value of k.

Order of

Running

Run FI F2 F3 Response, R

1 - - - 17.05

2 - - -t 19.62

3 - -t - 23.19

random 4 - -t + 25.61

order 5 -t - - 17.08

6 + - -t 19.71

7 -t + - 23.34

8 -t -t -t 25.71

Effect 0.09 6.09 2.49

Table 2.

The headings in the above table refer respectively to the three factors FI, F2 and F3, the run

identification (not order of running) and the measured response corresponding to the run. The entries in

each column refer to the treatment levels of the factor (i.e, high or low) associated with that column. The

rows define the 2 =8 runs. The response, , is the running time of the program under study.

The effect of a factor is a measure of the change in the response as we move from the to the ’+’

treatment level of that factor. The main effect of a factor is the difference between two average responses,

one corresponding to the treatments which have the ’+’ level of the factor and the other corresponding to

the treatments which have the level of the factor. Thus, the main effect of factor F3 is the average

response for treatments 2, 4, 6, 8 minus the average response for treatments 1, 3, 5, and 7.

Effect(F3) =
(19.62+25.61-tl9.71-t25.71)

4

(17.05-H23.19-tl7.08-t23.34)

4

2.49

Note that the algebraic sign of a main effect depends upon the arbitrary labeling of the two treatment lev-

els. As a consequence, the absolute value of a main effect is a more meaningful measure of the relative im-

portance of that factor. The sign of the effect is, of course, still needed to know if a factor treatment
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degrades or improves the observed response.

Two common methods for quickly calculating effects are the Yates algorithm (c/. [9], [11]) and the

table of contrast coefficients. The next section focus on the latter, which is more intuitive and applicable to

the use of Hadamard matrices.

3.2 Calculating Effects Using a Table of Contrast Coefficients

Once factors of interest have been selected, systematic patterns of treatment levels are used to carry

out investigations in a planned manner (see Table 3). As shown in 3.1, the effects of factors under study

(or main effects) can be estimated in a very straightforward manner.

Run FI F2 F3 Response, R

1 - - - 17.05

2 - - + 19.62

3 - + - 23.19

4 - + + 25.61

5 + - - 17.08

6 + - + 19.71

7 + + - 23.34

8 + + + 25.71

Effect 0.09 6.09 2.49

Table 3.

Although an estimate of the effects of interactions among factors on the measured response is not

directly available from the above table, these can easily be computed using a table of signs, as in the one

below:

Treatment FI F2 F3 F12 F13 F23 F123 Response, R

1 - - - + + + - 17.05

2 - - + + - - + 19.62

3 - + - - + - + 23.19

4 - + + - - + - 25.61

5 + - - - - + + 17.08

6 + - + - + - - 19.71

7 + + - + - - - 23.34

8 + + + + + + + 25.71

Effect 0.09 6.09 2.49 0.03 0.00 0.10 0.02

Table 4.
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Signs for the interactions are obtained by multiplying the signs of their respective factors. Thus, the

column of signs for the F12 interaction is obtained by multiplying together the signs for FI and F2.

In a general manner, k being the number of factors under study, the total number of possible p -factor

interaction combinations is:

c; =
.

pl{k-p)l

k

Thus, the total number of possible interactions is .

p=2

3 3 !

For example, there are exactly C, = = 3 possible 2-factor combinations in 3 factors and a total

2!(3-2)!

of 4 possible interactions listed altogether.

The effect associated with column c, is computed as follows:

Effect (Ci)=

1=1

q/2

where , R- and q are respectively the treatment level of the factor associated with F- , the response

corresponding to the run number i and the total number of runs. For example, the estimated effect for the

F123 interaction is:

Effect (F 123) =
-17.05+19.62+23.19-25.61 + 17.08-19.71-23.34+25.71

8/2

0.11
= 0.02

4

Table 4 is called a table of contrast coefficients. The next section shows how effects can be used to identify

factors that consume significant computing resources.

3.3 Variance and Standard Error

To decide which factor has a significant influence on the response R, it is necessary to evaluate the

effects against background noise. Noise is measured by standard error, Sp , or standard uncertainty.

Under certain assumptions it is possible to calculate the standard error for effects using higher-order (in-

volving 3 or more factors) interactions. In particular, if interactions between factors are negligible, then

these interactions measure differences arising principally from experimental error. This is the usual case in

SPS.
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For example, going back to Table 4, an estimate of the error can be obtained using columns

corresponding to interactions between two and three factors, respectively F12, F13, F23 and F123. By do-

ing so, they are assumed to be insignificant.

In the model used in SPS, the noise coefficient has an assumed normal distribution centered about

zero. An estimated value for the variance of an effect of Table 4 is thus given by:

m

Xeffeetj^

, >=i (0.03\0V0.lV0.02^
X = = = 0.003

m 4

where m is the number of insignificant interactions. The estimated standard error of an effect is equal to

the square root of the variance of the effect. Therefore:

Sp = a/OOOS = 0.05

From an statistical viewpoint, an effect is considered significant if it exceeds 2 or 3 times . Any-

thing within ±15p is likely to be just noise.

Following the SPS methodology, segments of codes {i.e., factors) or interactions are ranked quantita-

tively according to their sensitivity to perturbation. SPS rank is an ordered list of the magnitude of the

main effects. The more important the main effect of a factor, the higher its SPS rank. Consequently, such

code is more sensitive to perturbation.

Consider the following SPS rank taken from Table 2:

Factor Effect Rank

F2 6.09 1

F3 2.49 2

FI 0.09 3

Sp=±0.05

Statistically, effects that are more than 3 times S^ ean be called significant. Thus, in the above exam-

ple, F2 and F3 are significant while FI is noL However, statistical significance may not be a relevant cri-

terion to decide whether or not a factor is a program bottleneck. To make the final decision, the program-

mer first needs to look at the potentially significant bottlenecks based on the ranking and then decides

from the nature of the program segment whether a segment is indeed a candidate for further study.

As previously mentioned, Hadamard matrices are one possible scheme to generate statistical plans of

analysis for SPS screenings of many factors. The number of factors may range up to 199 [1]. The next

section gives a brief overview on the computation of effects with this particular type of design.

-8 -



4. Hadamard Matrices and the Computation of Effects

Let Prog2 be a MINID program with four poteatial bottlenecks: FI, F2, F3 and F4. Using the SPS

methodology, systematic patterns of delays are produced once locations of interest have been identified.

Hadamard matrices are one possible scheme that may be used to generate statistical plans of analysis.

With k =4 being the number of selected locations in Prog2, the order n of the Hadamard matrix to be creat-

ed is chosen as follows [1, p. 16]:

n is the first integer divisible by 4 such that n >(it +1)

To evaluate Prog2, with a minimum number of runs, the smallest possible plan is used. Here, it is built

from a Hadamard matrix of order 8. The corresponding plan is given in the table below.

Mean, p. FI F2 F3 F4 cl c2 c3 Response, R

+ -f- -1- -1- + + + + rl

+ - + - + - -1- - r2

+ + - - + + - - r3

+ - - + + - - + r4

+ -1- + - - - - r5

+ - + - - + - + r6

+ -i-
- - - - + -1- rl

+ - - + - + + - r8

Table 5.

{/? } are the measured responses for Prog2. R varies about an overall mean p computed with the first

column of Table 5. In a Hadamard matrix of a given order n at most n-1 columns may be assigned a factor.

Thus, with 4 factors and a column assigned to the computation of the mean, three left-over columns remain

respectively cl, c2 and c3. Each of those 3 remaining columns measure differences arising principally

from experimental error as long as interactions are negligible. Let effl, effl and effS be the effects associat-

ed with cl, c2 and c3. An estimated value for the variance of an effect is given by:

Teffect^''
2 2 2

y=i effect^-^ +effect^^ +effect^^

where j is an index over m residual columns.

2
The estimated standard error, 5^ , is then obtained by taking the square root of the variance, 5^

.

If no restriction applies on the number of runs that can be performed, measurement accuracy may be

increased by using a fold-over technique. By doing so, two-factor interactions are no longer confounded

with main effects. With fold-over, the statistical plan includes both the initial design and its negative.

Consequently, an evaluation of Prog2 with fold-over involves 16 runs: 8 runs correspond to the generated

Hadamard matrix (Table 5), plus 8 runs that correspond to its negative (Table 6). The negative of a matrix

is its signed opposite. This technique doubles the necessary number of runs.
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Mean, |i FI F2 F3 F4 cl c2 c3 Response, R

t9

- + - -1- -
-t-

- + rlO

- - + + - - -1- + rll

- -1- + - - -1- + - rl2

- - - - -1- + + rl3

- + - + + + + - rl4

- - + + + + - + rl5

- + + - + - - rl6

Table 6. Negative Entries for Fold-Over

When using fold-over, variance and standard error can be estimated in two ways, using: (i)left-over

columns {i.e . , cl,c2 and c3), (ii) a table of contrast coefficients. However, without fold-over the table of

contrast coefiicients cannot be used because main effects are confounded (mixed) with two-factor effects.

To generate a table of contrast coefficients from an Hadamard matrix (see section 3.2), only columns

of the plan associated with a factor are used. The table obtained for the evaluation of Prog2 is:

Variance and standard error are estimated using effects computed on higher order interactions (see 5.3).
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Note that the size of the table of contrast coefficients geometrically increases with the number of fac-

tors. As a result, the amount of necessary computation to produce the table rapidly becomes overwhelm-

ing, making the implementation inappropriate for a large number of factors. However, it is still possible to

get an estimate of the error using a limited version, which is illustrated below. The generation of combina-

tions is restricted to the multiplication of the first column of the plan (that one associated with the mean)

with each column associated with a factor. In the present case, this gives:

Mean, p. FI F2 F3 F4 cl c2 c3 c4 Response, R

+ + -1- + -1- + -1- + -t- rl

+ - -1- - -1- - + - -1- r2

+ + - - + -1- - - + r3

+ - - -1- -1- - - + -1- r4

+ -1- -1- + - + + -1- - r5

+ - + - - - + - - r6

+ + - - - + - - - r7

+ - - + - - - + - r8

- - - - - + + -1- + r9

- + - + - - + - + rlO

- - + + - - - + rll

- + + - - - - + + rl2

- - - - + + + + - rl3

- + - -1- + - + - - rl4

- - + + + + - - - rl5

- + + - + - - -1- - rl6

Table 7.

Variance and standard error are again obtained by using effects associated with the generated columns (i.e

cl, c2, c3 and c4).

5. Conclusion

Preliminary steps in Synthetic Perturbation Screening, SPS, often involve the statistical screening of

30-60 factors to discover which few are important. At this early stage of analysis, one is primarily con-

cerned with discarding factors that have no significant effect on the program responses of interest. To han-

dle such large screenings, one mainly needs an investigation strategy that is reliable and above all,

efficient. Hadamard matrix designs fit these requirements. We have shown how to estimate main and in-

teraction effects of factors when using experimental designs based on Hadamard matrices. We have also

explained how to compute the standard error and to interpret the results to discard less important factors,

thus focusing future experiments on those factors shown to be important. Note that the theory of Ha-

damard matrices [1,10,13,14,15,16] has not been covered herein. More conventional designs are found

readily in numerous textbooks [7,8,9,11,12].
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